

DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	Zeke Xie	Tel	(020) 8833 3808
Thrust/Hub	DSA, INFO	Office	E1-416
Email	zekexie@hkust-gz.edu.cn		

Section2: Research Project Proposal

Project Title	Efficient and Controllable AIGC with Diffusion Models		
Project Description	1. Summary		
(max 800 words)	1.1. This project focuses on advancing AI-generated content (AIGC) using diffusion models,		
	addressing challenges in computational efficiency and user control.		
	1.2. Students will optimize diffusion models (e.g., Stable Diffusion) for faster		
	training/inference and develop methods for precise output customization (e.g., adjusting		
	image styles or text coherence).		
	1.3. Applications include creative industries, education, and human-AI collaboration.		
	2. Objectives		
	2.1. Improve Computational Efficiency		
	2.1.1. Investigate methods to reduce training/inference costs (time, memory) without		
	quality loss.		
	2.1.2. Explore lightweight architectures (e.g., latent-space diffusion) and adaptive		
	sampling strategies.		
	2.1.3. Benchmark performance against baseline models (e.g., Stable Diffusion v1.5) on		
	datasets like COCO.		
	2.2. Enhance Controllability		
	2.2.1. Develop mechanisms for granular control (e.g., semantic prompts, spatial		
	conditioning).		
	2.2.2. Design intuitive interfaces (e.g., sliders, text feedback) for iterative user		
	refinement.		
	2.2.3. Experiment with hybrid models (e.g., diffusion + reinforcement learning) for intent		
	alignment.		
	2.3. Validate Practical Utility		
	2.3.1. Apply models to case studies in art/design, education, or scientific visualization.		
	2.3.2. Conduct user studies to evaluate usability, creativity, and ethical concerns (e.g.,		
	bias mitigation).		
	2.4. Foster Undergraduate Skill Development		

	 2.4.1. Train students in AI frameworks (PyTorch, Hugging Face Diffusers) and collaborative coding (Git). 2.4.2. Encourage critical analysis of AI ethics, including environmental impact and 		
	responsible deployment.		
	3. Expected Outcomes		
	3.1. Technical Contributions		
	3.1.1. Novel algorithms for efficient diffusion models (e.g., 30–50% faster inference).		
	3.1.2. Open-source code repositories for controllable generation techniques (e.g., cross-		
	modal guidance).		
	3.2. User-Centric Tools		
	3.2.1. Prototype interfaces (web/desktop apps) for lay users to guide AIGC outputs.		
	3.2.2. Tutorials for domain-specific tasks (e.g., medical imaging, game asset creation).		
	3.3. Case Studies and Dissemination		
	3.3.1. Demonstrations in applied contexts (e.g., educational diagrams, marketing		
	content).		
	3.3.2. A public workshop to share tools and findings.		
	3.3.3. A final report and potential conference submissions.		
	4. Impact		
	4.1. Bridges theoretical AI research and practical usability, democratizing AIGC through		
	efficiency and control.		
	4.2. Prepares students for AI careers via hands-on experience in full-stack development and		
	ethical AI design.		
Proposed Research	Start Date:2025 /4 /01		
Duration	End Date:2025 /9 /30		
Student/Researcher	1. Implement and test diffusion model optimizations (e.g., lightweight architectures, adaptive		
Duties	sampling).		
	2. Benchmark model performance on efficiency (speed, memory) and output quality.		
	3. Conduct case studies and user evaluations to assess practical utility and ethical concerns.		
	4. Document code, maintain repositories, and contribute to reports/publications.		
Technical Skills	□ √ Python □ Machine Learning □ Big Data		
Required	□ R □ √ Deep Learning □ SQL		
	□ C/C++ □ Other:		
Preferred	1. Programming (Python, PyTorch), 2. Deep Learning basics, 3. Linear Algebra/Statistics, 4.		
Student/Researcher	Strong interest and basic knowledge in generative AI (e.g., diffusion models).		
Background			

Maximum Number of	□ 1	$\Box \sqrt{2}$
Students/Researchers		

Section3: Pre-Application Research Exposure Meeting

Faculty members are encouraged to schedule a Research Exposure Meeting to introduce students to their projects.

Preferred Date	-	
Preferred Time	-	
Meeting Mode	□ In-Person	□ Online
Venue (if in-person)	-	
Meeting Link (if	-	
online)		