DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	Zeyi WEN	Tel	
Thrust/Hub	DSA Thrust, Info Hub	Office	E2 312
Email	wenzeyi@ust.hk		

Section2: Research Project Proposal

Project Title	Efficient Hyperparameter Optimization for LLM Inference		
Project Description	Provide a brief summary of the project, objectives, and expected		
(max 800 words)	outcomes.		
	Large language models (LLMs) have demonstrated remarkable capabilities in text		
	generation, summarization, and dialogue systems. However, deploying these		
	models effectively requires careful tuning of inference hyperparameters—such as		
	temperature and top_p—which are crucial for balancing text quality, creativity,		
	and computational efficiency. Hyperparameter optimization for LLMs presents		
	significant challenges, as traditional methods like grid search, random search,		
	and standard Bayesian optimization are often time-consuming, token-intensive,		
	and struggle with the exploration-exploitation trade-off, particularly when		
	evaluating high-cost configurations (e.g., full-scale inference with long prompts).		
	To address these challenges, this project aims to develop an efficient		
	hyperparameter optimization method for LLM deployment, focusing on		
	minimizing token consumption while maintaining or improving text quality. Key		
	research questions include designing advanced searching strategies and		
	implementing multi-fidelity evaluation techniques. The project seeks to establish		
	a principled framework for hyperparameter optimization in LLMs, emphasizing		
	efficiency, scalability, and adaptability. Students will explore both theoretical		
	foundations (e.g., convergence guarantees) and practical implementations,		
	validated through extensive benchmarks on diverse NLP tasks.		
Proposed Research	Start Date: _2025 /03 /15		
Duration	End Date: <u>2025</u> / <u>09</u> / <u>01</u>		
Student/Researcher	List the primary responsibilities and tasks expected from the student/		
Duties	researcher during the project.		
	Conduct benchmarking on NLP tasks in terms of text quality and efficiency.		
	Establish an LLM serving system using SOTA frameworks.		
	Design and implement adaptive search strategies to balance exploration-		
	exploitation trade-offs.		
Technical Skills	☑ Python ☑ Machine Learning ☐ Big Data		
Required	□ R ☑ Deep Learning □ SQL		

	□ C/C++	☐ Other:
Preferred	List preferred course	work, experience, or skills (e.g., statistics,
Student/Researcher	programming, AI).	
Background	Math, programming	
Maximum Number of	□ 1	☑ 2
Students/Researchers		
Section3: Pre-Applicating Faculty members are entheir projects.	•	a Research Exposure Meeting to introduce students to
Preferred Date		
Preferred Time		
Meeting Mode	☐ In-Person	□ Online
Venue (if in-person)		
Meeting Link (if		
online)		