

DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	CHU Xiaowen	Tel	
Thrust/Hub	DSA Thrust/ Information Hub	Office	E1 L6 603
Email	xwchu@hkust-gz.edu.cn		

Section2: Research Project Proposal

Project Title	Ego-View Drone Video Understanding for Scene Understanding	
Project Description	1.Background	
(max 800 words)	Ego-view video understanding has emerged as a critical research area	
	driven by wearable devices (e.g., AR glasses) and autonomous driving.	
	However, applying ego-view understanding to drone platforms introduces	
	unique challenges and opportunities. Unlike ground-based scenarios (e.g.,	
	Ego4D datasets with head-mounted static cameras), drones operate in	
	highly dynamic space environments, requiring real-time spatial reasoning	
	and for the aerial tasks such as obstacle avoidance, terrain mapping, and	
	target tracking. This project aims to bridge the gap between conventional	
	ego-view research and the demands of aerial platforms by developing a	
	dedicated dataset and evaluation framework for drone-centric video	
	2. Challenges	
	Drone ego-view video understanding faces the two key challenge. First,	
	nign-speed maneuvers (e.g., pitch, yaw, annuae changes) introduce	
	severe motion but and unstable viewpoints, degrading the performance of	
	existing video stabilization and action recognition models. Second, Ground-	
	centric datasets (e.g., Ego4D) lack annotations for <u>aerial-specific tasks</u> ,	
	3 Objective	
	First this project will collect the video data for drone, canturing diverse	
	environments (urban forest aquatic) with visual and deconatial data from	
	the open web. Second we will utilize the existing data anotation method	
	(such as the crowdsourcing) to annotate the language query-answer for	
	the drone video data and extend it to the large-scale multimodal dataset	
	for drone eqo-view understanding. Third, we will develop a comprehensive	
	benchmark to evaluate state-of-the-art multimodal large language models	
	(MLLM) on aerial tasks, exposing limitations in spatial reasoning and	
	temporal coherence.	
	4. Expected Outcomes	

	Ego-Dro	ne Dataset: A multimodal aeria	al ego-view dataset with	
	rich anno	otations, enabling research in s	cene understanding.	
	 Benchm 	ark Insights: Quantitative ana	lysis of MLLM models'	
	limitation	s in handling aerial dynamics,	providing guidelines for	
	model ac	laptation (e.g., motion-robust a	rchitectures).	
	Open-So	ource Tools: Release data pre	processing code,	
	evaluatio	n scripts, and baseline models	to accelerate community-	
	driven re	search.		
	5. Required Competencies			
The students are expected to have the following skills:				
	 Fundamental understanding of Large Language Models (LLMs) 			
and Mu		nd Multimodal Large Language Models (MLLMs).		
	 Basic know 	owledge in Computer Vision (C	V) and Natural Language	
	Processi	ng (NLP).		
	 Basic kn 	owledge in basic Python progra	amming, Linux system	
	operatior	ns and web crawler.		
Proposed Research	Start Date: 2025 / 03/ 10			
Duration	End Date: 2025 / 09/ 10			
Student/Researcher	The students are expected to conduct a systematic review of the specific			
Duties	domain. Additionally, they are required to collect data from the internet			
	using web crawlers and complete the benchmark evaluation using Python			
	through MLLM.			
Technical Skills	⊡Python	Machine Learning	□ Big Data	
Required	□R	Deep Learning		
	□ C/C++	□ Other:		
Preferred	LLM, MLLM, Python Programming, Web Crawler			
Student/Researcher				
Background				
Maximum Number of	☑ 1	□ 2		
Students/Researchers				

Section3: Pre-Application Research Exposure Meeting

Faculty members are encouraged to schedule a Research Exposure Meeting to introduce students to their projects.

Preferred Date	2025.03.07	
Preferred Time	14.00	
Meeting Mode	□ In-Person ☑ Online	
Venue (if in-person)		
Meeting Link (if	https://meeting.tencent.com/dm/S2r9xLSqaFmz	
online)		