

DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	Weikai YANG	Tel	13051670559
Thrust/Hub	DSA/INFH	Office	W1-316
Email	weikaiyang@hkust-gz.edu.cn		

Section2: Research Project Proposal

Project Title	Human-Al Collaborative Sample Selection Framework	
Project Description	1. Background	
(max 800 words)	The quality of training datasets is a critical determinant of machine	
	learning model performance. The adage "garbage in, garbage out" is	
	particularly salient in data-driven AI: noisy, redundant, or biased samples	
	degrade generalization and increase training instability. While manual	
	curation by experts remains the gold standard, scaling this approach to	
	large-scale datasets is prohibitively expensive. Recent advances of	
	foundation models provide an efficient way to evaluate the quality of	
	samples and filtering out low-quality samples. However, the process is	
	black-box and offers no insight into the sampling process, making it hard	
	to be improved when the sampling result is not satisfied. To tackle this	
	issue, this project aims to create a human-Al collaborative sample	
	selection framework that synergizes the scalability of foundation models	
	with human interpretability, enabling dynamic optimization of automation	
	efficiency and expert oversight.	
	2. Challenges	
	(a) Absence of Universal Quality Standards: Defining objective metrics	
	for sample quality is inherently task-dependent, particularly for	
	subjective tasks (e.g., creativity assessment in text generation).	
	(b) Unstructured Model Outputs: Foundation models generate free-text	
	rationales and scores that resist systematic analysis at scale,	
	complicating human validation and refinement.	
	3. Objectives	
	(a) Develop a standardized prompting framework to generate quality	
	scores, rationales, and structured metadata during sample evaluation.	
	(b) Design an effective visualization to present the foundation model	
	outputs and support human analysis	
	(c) Establish an iterative human-Al collaboration workflow for sample	
	selection	
	4. Methodology	
	(a) Metadata-Enhanced Prompting: Design structured prompts to extract:	
	quality scores (1-5 scale), rationales (free-text explanations for	

	scores), and task-specific metadata (e.g., "ambiguity level" for textual entailment, "emotional polarity" for sentiment analysis). Implement	
	consistency checks via multi-prompt voting and contradiction	
	resolution mechanisms.	
	(b) Interactive Data Analysis: Develop a dashboard to visualize score	
	distributions, rationale keywords, and meta-data that allow large-scale analysis	
	(c) Dynamic Selection Strategy: Allow uses to provide some feedback on	
	the sample selection results, and the system will automatically adjust	
	to fit user preference	
	5. Expected Outcomes	
	(a) An effective visualization method to organize the output of foundation	
	models and support analysis in scale	
	(b) A visual analysis pipeline that integrates foundation models and	
	human insights to enhance the quality of sample selection	
	(c) An open-sourced prototype of the interactive sample selection tool	
Proposed Research	Start Date:MAR /15 /2025	
Duration	End Date:SEPT /15 /2025	
Student/Researcher	- Actively participate in discussions and provide regular feedback	
Duties	- Conduct a literature review on LLM-based sample selection method	
	- Implement the prompt to extract scores, rationale, metadata and	
	visually organize them	
	- Design the workflow for interactive sample selection	
	- Design and conduct rigorous experiments to evaluate the performance	
	of sampling results	
Technical Skills	☑ Python ☑ Machine Learning ☐ Big Data	
Required	☐ R	
	☐ C/C++ ☐ Other:	
Preferred	Python, Javascript, and the usage of large language models. But it is not	
Student/Researcher	required as I will provide necessary guidance to help you.	
Background		
Maximum Number of	□1 ☑2	
Students/Researchers		

Section3: Pre-Application Research Exposure Meeting

Faculty members are encouraged to schedule a Research Exposure Meeting to introduce students to their projects.

Preferred Date	Discussed via email	
Preferred Time	Discussed via email	
Meeting Mode	☑ In-Person	□ Online
Venue (if in-person)	W1-316	
Meeting Link (if		
online)		