

DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	Weikai YANG	Tel	13051670559
Thrust/Hub	DSA/INFH	Office	W1-316
Email	weikaiyang@hkust-gz.edu.cn		

Section2: Research Project Proposal

Project Title	Pictorial Chart Understanding	
Project Description	1. Background	
(max 800 words)	Pictorial charts are favored for their memorability and visual appeal,	
	offering a more engaging alternative to basic charts. However, existing	
	visual language models or Chart QA models fail to accurately understand	
	pictorial charts and answer related questions due to the substantial	
	domain gap difference between the basic charts and fancy charts. While	
	finetuning with pictorial charts is a promising way, it is costly to collect	
	sufficient pictorial charts and annotate them for training. To address this	
	need, this project aims to synthesis pictorial charts using generative	
	models and use them to enhance the model capability in understanding	
	pictorial charts in real world.	
	2. Challenges	
	(a) Data Scarcity and Annotation Costs: Collecting and annotating	
	large-scale real-world pictorial charts is labor-intensive due to their	
	niche use cases and copyright restrictions.	
	(b) Domain Gap Complexity: Pictorial charts (e.g., infographics,	
	illustrated diagrams) exhibit highly stylized visual features (e.g.,	
	metaphors, icons, decorative elements) that differ radically from basic	
	charts, causing catastrophic failures in existing Chart QA models.	
	3. Objectives	
	(a) Develop a generative framework to synthesize high-fidelity, diverse	
	pictorial charts with controllable attributes (e.g., iconography, layout,	
	thematic styles).	
	(b) Design a domain adaptation pipeline to bridge the gap between	
	synthetic and real-world pictorial charts, enhancing model	
	generalizability. (c) Achieve state-of-the-art performance on pictorial Chart QA tasks using	
	synthetic data-augmented training.	
	4. Methodology	
	(a) Controllable Pictorial Chart Synthesis. There are two ways to achieve	
	this: 1) Leverage diffusion models or GANs to generate pictorial charts	
	, , ,	
	with fine-grained control over, and 2) Use visual motifs (e.g., icons,	

	metaphors) and rule-based rendering techniques to generate them.		
	After generating pictorial charts, we will also generate associated		
	question-answer pairs for training and testing.		
	(b) Generate stylistic variations (e.g., flat design, 3D realism) using LoRA		
	adapters.		
	(c) Train a vision-language model (VLM) on both basic charts and		
	pictorial charts, and apply domain-invariant contrastive learning to		
	align synthetic and real chart embeddings.		
	5. Expected Outcomes		
	(a) An open-source generative toolkit for synthesizing stylized pictorial		
	charts with customizable attributes		
	(b) A benchmark dataset of 1,000+ real and synthetic pictorial charts with		
	annotated QA pairs.		
	(c) A fine-tuned vision-language model achieving >20% improvement in		
	QA accuracy on pictorial charts over baseline models.		
	(d) Guidelines for optimizing synthetic data realism/diversity trade-offs in		
	low-resource visual domains.		
Proposed Research	Start Date:MAR /15 /2025		
Duration	End Date:SEPT /15 /2025		
Student/Researcher	- Actively participate in discussions and provide regular feedback		
Duties	- Conduct a literature review on existing Chart QA method and pictorial		
	chart generation method		
	- Implement the toolkit for pictorial charts generation		
	- Train the model on the constructed dataset, then design and conduct		
	rigorous experiments to evaluate the performance		
Technical Skills	☑ Python ☑ Machine Learning ☐ Big Data		
Required	□ R ☑ Deep Learning □ SQL		
	☐ C/C++ ☐ Other:		
Preferred	Python, and the experience of running generative models. But it is not		
Student/Researcher	required as I will provide necessary guidance to help you.		
Background			
Maximum Number of	□1		
Students/Researchers			

Section3: Pre-Application Research Exposure Meeting

Faculty members are encouraged to schedule a Research Exposure Meeting to introduce students to their projects.

Preferred Date	Discussed via email	
Preferred Time	Discussed via email	
Meeting Mode	☑ In-Person	□ Online
Venue (if in-person)	W1-316	
Meeting Link (if		
online)		