

DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	Wei WANG	Tel	13003187004
Thrust/Hub	DSA/INF	Office	W4 515
Email	weiwcs@ust.hk		

Section2: Research Project Proposal

Project Title	Generative Models for Relational Datasets	
Project Description	1. Overview	
(max 800 words)		
	Relational datasets, characterized by structured tables and inter-table	
	dependencies, underpin critical applications in database management,	
	analytics, and privacy-aware systems. This project investigates advanced	
	generative models—including Probabilistic Circuits (PCs), Tensor	
	Decomposition, and Renormalization Group (RG) methods—to capture	
	the joint distributions of relational data while enabling efficient	
	exact/approximate inference. By enhancing these models' capacity to	
	represent complex relational structures, the project aims to address	
	challenges in database benchmarking, privacy-preserving data publishing,	
	selectivity estimation, and approximate query processing.2. Research Objectives	
	Model Adaptation for Relational Data	
	Develop techniques to adapt PCs, tensor models, and RG methods to	
	relational tables and databases, ensuring they capture intra-table	
	correlations (e.g., column dependencies) and inter-table relationships (e.g., foreign keys, joins). Improve expressiveness via hierarchical architectures or attention	
	mechanisms to model high-dimensional, sparse relational data.	
	Selectivity Estimation for Complex Queries	
	Design inference algorithms to estimate the selectivity of single-table	
queries and ad hoc multi-table joins (e.g., SQL WHERE claus		
	predicates on multiple columns).	
	Enable approximate query processing by sampling synthetic data from the	
	learned generative model while preserving statistical fidelity.	
	Incremental Model Maintenance	
	Create update mechanisms to efficiently adjust models as underlying data	
	evolves (e.g., row insertions, schema changes), minimizing full retraining	
	costs.	

Explore dynamic tensor factorization or online PC learning to maintain accuracy under streaming data scenarios.
3. Methodology
Model Architecture Design: Extend PCs with relational-aware sum-product networks (SPNs) and tensor models with database schema embeddings.
Query-Aware Training: Incorporate query workloads into model training to prioritize fidelity for frequent or critical query patterns.
Benchmarking: Evaluate models on standard relational datasets (e.g., TPC-H, IMDb) using metrics like query error rate, sample quality (KL divergence), and update latency.
4. Expected Contributions
Theoretical: A unified framework for generative modeling of relational data, bridging probabilistic inference and database theory.
Technical: Open-source implementations of scalable models for selectivity estimation and data synthesis, compatible with SQL engines.
Practical: Tools for privacy-safe data sharing (via synthetic data generation) and improved query optimizers in database systems.
5. Applications
Database Benchmarking: Generate synthetic databases with realistic constraints for stress-testing systems.
Privacy Preservation: Publish statistically accurate, non-reversible synthetic data for secure analytics.
Query Optimization: Accelerate query planning via fast selectivity estimates for complex predicates.
6. Broader Impact
The project's models and algorithms will advance scalable AI-driven database tools, enabling efficient analytics on large-scale relational data while addressing privacy concerns. The methodologies developed could

	also inform generative databases.	modeling in graph-structured data and time-series
Proposed Research	Start Date: 2025	/ MAR / 02
Duration	End Date:2026	/ MAR / _01
Student/Researcher	-	
Duties		
Technical Skills	☑ Python	□ Machine Learning □ Big Data
Required	□R	□ Deep Learning
	□ C/C++	☑ Other: Interest in
		cognitive aspect of
		learning is a plus
Preferred	List preferred coursework, experience, or skills (e.g., statistics,	
Student/Researcher	programming, Al).	
Background		
Maximum Number of	□ 1	☑ 2
Students/Researchers		

Section3: Pre-Application Research Exposure Meeting

Faculty members are encouraged to schedule a Research Exposure Meeting to introduce students to their projects.

Preferred Date	Mon / Wed / Fri morning	
Preferred Time	n/a	
Meeting Mode	☑ In-Person	☑ Online
Venue (if in-person)		
Meeting Link (if	On request	
online)		