

DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	Guoming Tang	Tel	13618480331
Thrust/Hub	DSA/INFO	Office	W3-306
Email	guomingtang@hkust-gz.edu.cn		

Section2: Research Project Proposal

Project Title	Introducing LLMs to Building Energy Modeling	
Project Description	As global urbanization accelerates, the high energy consumption of official	
(max 800 words)	buildings underscores the urgent need for advanced modeling methods.	
	Traditional building energy modeling (BEM) approaches face major	
	challenges: forward modeling , based on physical principles, requires	
	extensive input and expertise, while inverse modeling , which uses	
	historical data, struggles with limited datasets and lacks interpretability.	
	Integrating large language models (LLMs) into BEM presents opportunities	
	to overcome these limitations. LLMs provide distinct advantages over	
	traditional methods, including explainability through natural language	
	insights, generalization by leveraging domain knowledge, and a	
	seamless transition from prediction to actionable recommendations .	
	These features make LLMs ideal for advancing energy efficiency and	
	sustainability in buildings.	
	This project will explore the following questions:	
	1. How can time-series sensor data (e.g., temperature, humidity, HVAC	
	operations) be effectively preprocessed and represented for LLM-	
	based modeling? [1]	
	2. Can LLMs outperform traditional neural networks in energy	
	consumption prediction by leveraging reasoning capabilities and	
	domain knowledge (using fine-tuning methods like LoRA)? [2, 3]	
	3. How can LLMs provide interpretable explanations and actionable	
	optimization suggestions alongside numerical predictions?	
	4. How can LLMs' expert knowledge lower the barrier to using complex	
	forward modeling methods (e.g., developing LLM agents for BEM)? [4]	
	You will gain the following opportunities:	
	1. Real-world Data : Access real data from hundreds of sensors in large	
	buildings across multiple locations, process and apply them for BEM.	
	2. LLM Agent Development: Gain hands-on experience in developing	
	LLM agents, exploring techniques like RAG, prompt engineering, and	
	fine-tuning, and experiment with their applications.	

	3. Research Skills & Papers: Identify real-world problems, transform	
	them into research topics, and produce high-quality academic papers	
	(if possible).	
	4. Internship Opportunities: Students participating in this project may	
	have the opportunity to intern at relevant companies.	
	[1] Li Z, Deldari S, Chen L, et al. Sensorllm: Aligning large language	
	models with motion sensors for human activity recognition[J]. arXiv	
	preprint arXiv:2410.10624, 2024.	
	[2] Gruver N, Finzi M, Qiu S, et al. Large language models are zero-shot	
	time series forecasters[J]. Advances in Neural Information Processing	
	Systems, 2023, 36: 19622-19635.	
	[3] Jin M, Wang S, Ma L, et al. Time-LLM: Time series forecasting by	
	reprogramming large language models[C]. International Conference on	
	Learning Representations (ICLR), 2024.	
	[4] Zhang L, Chen Z, Ford V. Advancing building energy modeling with	
	large language models: Exploration and case studies[J]. Energy and	
	Buildings, 2024, 323: 114788.	
Proposed Research	Start Date: Now	
Duration	End Date: Aug. 2025	
Student/Researcher	Students should read papers in related fields, actively engage in team	
Duties	discussions, and contribute ideas to the project. Additionally, they will be	
	responsible for part of coding tasks. Exploring different cutting-edge	
	directions to solve problems is encouraged.	
Technical Skills	☑Python □ Machine Learning □ Big Data	
Required	□ R	
	□ C/C++ □ Other:	
Preferred	Programming, Academic Reading & Writing Skills, Teamwork Ability	
Student/Researcher		
Background		
Maximum Number of	□ 1	
Students/Researchers		

Section3: Pre-Application Research Exposure Meeting

Faculty members are encouraged to schedule a Research Exposure Meeting to introduce students to their projects.

Preferred Date	Mar. 14-16, 2025	
Preferred Time	Morning or afternoon time, 1 hour	
Meeting Mode	☑ In-Person	
Venue (if in-person)	W3-306	
Meeting Link (if		
online)		