

DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	Guoming Tang	Tel	13618480331
Thrust/Hub	DSA/INFO	Office	W3-306
Email	guomingtang@hkust-gz.edu.cn		

Section2: Research Project Proposal

Project Title	Green GPU Computing for Large-Scale LLM Inferences	
Project Description	As the scale of large language models (LLMs) continues to grow, so does	
(max 800 words)	the demand for more efficient and adaptive GPU-based inference.	
	Traditional GPU resource allocation often relies on static or heuristic-	
	based methods, which can lead to suboptimal energy consumption and	
	increased latency. These challenges become even more pronounced in large-scale online inference scenarios, where diverse tasks—each with distinct computational complexities —must be processed	
	simultaneously.	
	This project will explore the following questions:	
	1. How can we define new metrics regarding the GPU computing	
	potentials in evaluating LLM performance and overhead?	
	2. How do we seamlessly match new tasks to the most suitable	
	hardware config class in an online environment with multiple GPU nodes?	
	3. Can LLMs facilitate dynamic adjustments to maintain efficiency	
	amid variable workloads?	
	4. Can LLMs generalize the hardware-tuning methodology to new architectures, tasks, or even different hardware platforms?	
	You will gain the following opportunities:	
	1. Hands-on HPC & GPU Experience	
	Work with real GPU environments and gather practical skills in	
	hardware tuning, optimization algorithm and cluster-based	
	analysis. Gain a deep understanding of balancing performance	
	metrics such as energy consumption and inference latency.	
	2. LLM Integration & Agent Development	
	Explore how large language models can be harnessed for	
	scheduling, optimization, and interpretability. Experiment with	
	prompt engineering, fine-tuning (e.g., LoRA), and LLM-based	
	reasoning to push the boundaries of HPC scheduling methods.	

香港科技大学 (广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU) THE HONG KONG DATA SCIENCE AND ANALYTICS THRUST 信息枢纽 INFORMATION HUB

	3. Research & Publications	
	Identify real-world problems within GPU hardware resource	
	management and transform these insights into publishable research.	
	There is a strong opportunity to work on cutting-edge topics and	
	produce high-quality academic papers (if possible).	
	4. Professional Growth & Internships	
	Students in this project may access internship opportunities with	
	industry partners, opening doors to broader collaborations and future	
	career development.	
Proposed Research	Start Date: Now	
Duration	End Date: Aug. 31, 2025	
Student/Researcher	Students should read papers in related fields, actively engage in team	
Duties	discussions, and contribute ideas to the project. Additionally, they will be	
	responsible for part of coding tasks. Exploring different cutting-edge	
	directions to solve problems is encouraged.	
Technical Skills	☑Python ☑Machine Learning □ Big Data	
Required	☐ R ☑ Deep Learning ☐ SQL	
	□ C/C++ □ Other:	
Preferred	Programming, Academic Reading & Writing Skills, Teamwork Ability	
Student/Researcher		
Background		
Maximum Number of	□ 1	
Students/Researchers		

Section3: Pre-Application Research Exposure Meeting

Faculty members are encouraged to schedule a Research Exposure Meeting to introduce students to their projects.

Preferred Date	Mar. 14-16, 2025	
Preferred Time	Morning or afternoon time, 1 hour	
Meeting Mode	☑ In-Person □ Online	
Venue (if in-person)	W3-306	
Meeting Link (if		
online)		