

DSA Research Experiences for Undergraduates

Research Project

Section1: Faculty Information

Full Name	Yuxuan Liang	Tel	(020) 8833 5733
Thrust/Hub	System Hub / Thrust of	Office	W2 L5 511
	Intelligent Transportation		
	Info Hub / Thrust of Data		
	Science and Analytics		
Email	yuxuanliang@hkust-gz.edu.cn		

Section2: Research Project Proposal

Project Title	Exploring Vision-Language Models for Spatio-Temporal Data Prediction
Project Description	1. Background
(max 800 words)	Spatio-temporal prediction, such as traffic flow forecasting and weather
	modeling, involves capturing complex interactions between temporal
	dynamics and spatial structures. While existing methods have made
	significant progress, we propose a novel direction that leverages the
	power of Vision-Language Models (VLMs) to enhance spatio-temporal
	forecasting. Our approach transforms raw spatio-temporal data into
	image-like frames, enabling the use of pre-trained VLMs (e.g., CLIP,
	Flamingo) to integrate visual patterns (e.g., traffic heatmaps) and semantic
	context (e.g., event descriptions) for more accurate and interpretable
	predictions. By bridging the gap between spatio-temporal data and
	multimodal learning, this project aims to unlock new possibilities for urban
	dynamics modeling and beyond.
	2. Objectives
	This project aims to:
	- Develop a spatio-temporal-to-visual mapping framework to convert raw
	spatio-temporal data (e.g., traffic grids) into image-like frames.
	- Design a multimodal fusion architecture integrating pre-trained VLMs for
	joint visual-textual reasoning.
	- Validate the framework on public datasets (e.g., PeMS traffic data) to
	achieve state-of-the-art prediction accuracy with interpretable outputs.
	2. Methodology
	3. Methodology
	Convert energia temporal tencore (time x beight x width x sharrals) into
	- Convert spatio-temporal tensors (time × neight × width × channels) into
	multi-channel image sequences. (Example: Map traffic flow grids to RGB
	images where channels encode speed, density, and direction.)

	- Use video pretrained models (e.g., TimeSformer) to extract spatio-	
	temporal features.	
	Step 2: Textual Context Injection	
	- Generate text prompts from metadata (e.g., "Weekday morning rush hour	
	with light rain").	
	- Align visual features and text embeddings via CLIP-style contrastive	
	learning.	
	Step 3: Multimodal Fusion	
	- Combine visual features, text embeddings, and raw temporal signals	
	using gated cross-attention.	
	- Train a lightweight predictor (e.g., MLP or 1D-CNN) to generate future	
	frames.	
	4 Innovation	
	- First integration of VLMs for spatio-temporal prediction, leveraging both	
	visual priors and semantic context.	
	- Interpretable outputs: Visualize attention maps to explain how text	
	prompts (e.g., "accident on Highway 101") influence predictions.	
	5. Expected Outcomes	
	- A lightweight library for spatio-temporal visual-textual data conversion.	
	- A benchmark comparison against ST-GCN, ConvLSTM, and ST-	
	Transformer on traffic datasets.	
	- A research paper (targeting CIKM or KDD workshops) and open-source	
	code.	
Proposed Research	Start Date: _1 / _June / 2025	
Duration	End Date:1_ / _December_ /2025_	
Student/Researcher	Phase 1: Data Preprocessing & Visualization	
Duties	- Convert raw spatio-temporal data (e.g., CSV files) into image frames	
	using Python/OpenCV.	
	- Annotate text prompts based on metadata (e.g., weather, holidays).	
	Phase 2: Model Implementation	
	- Fine-tune pre-trained VLMs (e.g., CLIP-ViT) on spatio-temporal image	
	sequences.	
	- Implement fusion modules (e.g., cross-attention) using Py lorch.	
	Phase 3: Evaluation & Visualization	
	- Compare prediction accuracy (MAE/RMSE) against baselines.	
	- Generate Grad-CAM visualizations to interpret model decisions.	

	Phase 4: Paper writing & Deployment		
	- Write a paper following the standard format of conference.		
	- Develop and deploy a visual interactive system.		
Technical Skills	☑Python	☑Machine Learning	⊡Big Data
Required	□R	☑ Deep Learning	□ SQL
	□ C/C++	□ Other:	
Preferred	Academic: Undergraduate students in Computer Science, Data Science,		
Student/Researcher	or GIS-related fields.		
Background			
	Experience:		
	- Coursework or projects in machine learning (especially CV/NLP).		
	- Hands-on experience with PyTorch.		
	Bonus:		
	- Prior exposure to spatio-temporal prediction (e.g., traffic forecasting).		
	- Familiarity with linux system for large-scale training.		
Maximum Number of	□ 1	☑ 2	
Students/Researchers			

Section3: Pre-Application Research Exposure Meeting

Faculty members are encouraged to schedule a Research Exposure Meeting to introduce students to their projects.

Preferred Date	Each Friday
Preferred Time	14:00-15:00
Meeting Mode	⊡In-Person □ Online
Venue (if in-person)	W2-511
Meeting Link (if online)	