Generative Adversarial Policy Network for Modelling Protein Complexes
Abstract
Structure prediction of large protein complexes (a.k.a., protein multimer mod- elling, PMM) can be achieved through the one-by-one assembly using provided dimer structures and predicted docking paths. However, existing PMM methods struggle with vast search spaces and generalization challenges: (1) The assembly of a N -chain multimer can be depicted using graph structured data, with each chain represented as a node and assembly actions as edges. Thus the assembly graph can be arbitrary acyclic undirected connected graph, leading to the com- binatorial optimization space of N^(N −2) for the PMM problem. (2) Knowledge transfer in the PMM task is non-trivial. The gradually limited data availability as the chain number increases necessitates PMM models that can generalize across multimers of various chains. To address these challenges, we propose GAPN, a Generative Adversarial Policy Network powered by domain-specific rewards and adversarial loss through policy gradient for automatic PMM prediction. Specifi- cally, GAPN learns to efficiently search through the immense assembly space and optimize the direct docking reward through policy gradient. Importantly, we de- sign a adversarial reward function to enhance the receptive field of our model. In this way, GAPN will simultaneously focus on a specific batch of multimers and the global assembly rules learned from multimers with varying chain numbers. Empirically, we have achieved both significant accuracy (measured by RMSD and TM-Score) and efficiency improvements compared to leading complex mod- eling software. GAPN outperforms the state-of-the-art method (MoLPC) with up to 27% improvement in TM-Score, with a speed-up of 600×.
Project members
Jia LI
Assistant Professor
Publications
Deep Reinforcement Learning for Modelling Protein Complexes. Ziqi Gao, Tao Feng, Jiaxuan You, Chenyi Zi, Yan Zhou, Chen Zhang, and Jia Li.
Project Period
2024
Research Area
Data-driven AI
Keywords
Docking path prediction, Policy network, Protein complex structure prediction, Reinforcement learning